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Abstract: Chemometrics is a science where chemistry and pharmaceutical science meet 
statistics and software. The primary focus of chemometrics involves the use of 
mathematical or software procedures in particular, both to develop analytical methods 
and to analyse the signals and results obtained. This paper focusses on chromatography 
and on how chemometrics has been applied to chromatographic problems in pharma- 
ceutical and biomedical analysis. Examples of several chemometric techniques are given 
and recent developments in the use of optimization methods, regression methodology, 
multivariate analysis and expert systems are discussed. 
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Introduction 
A slightly adapted version of the official definition of chemometrics defines it as “the 
chemical discipline that uses mathematical, statistical and other methods of formal logic 
to design or select optimal procedures and experiments, and to provide maximum 
chemical information by analysing chemical data”. This indicates that chemometricians 
consider chemical analysis as a process in which the chemical determination is only one 
part, and that they are interested in what happens before, after and during the actual 
measurement process itself. To explain this by way of concrete examples, it is proposed 
to consider one of the more important pharmaceutical and biomedical methods, namely 
chromatography. 

The measurement process consists of several steps, as shown in Fig. 1. First one 
specifies the problem, then one develops a suitable method and carries out the procedure 
and finally one interprets the results. Some of these steps can be further subdivided. For 
instance, the development of a method can really be considered to consist of two sub- 
steps. One first makes the initial selection of a method; for instance, one may first decide 
to carry out high-performance liquid chromatography (HPLC) using reversed-phase with 
methanol-water (5050, v/v) and a buffer of pH 4. Then one may optimize these 
conditions to find eventually that some acetonitrile should be added to the eluent and 
that the pH should really be 3. In the interpretation of results one also finds two sub- 
steps. The first consists of the translation of electrical signals to a list of low level data, 
such as chemical identities and concentrations. These must then be translated to some 
higher level concept; for instance, the results may indicate that the patient whose blood 
was analysed has a certain illness. 
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THE MEASUREMENT PROCESS 

OVER ALL SYSTEM 

Figure 1 
Schematic diagram of the measurement process. 
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Most processes contain feedback loops and interact with their environment. For 
instance, a method must be validated and quality control must be carried out. If the 
results of validation indicate that something is wrong, then it may be necessary to carry 
out the method development all over again. The results should be comprehensible to 
other workers, and this environmental interaction may have a consequence; for instance 
the results may indicate that one also needs data for another substance, therefore the 
method must be adapted; or another consequence could be that more rapid results are 
requested and this could require adaptation of the method or re-organisation of the 
laboratory. 

Chemometric methods 

Clearly the specification of the problem, step 1, is important but it has nothing to do 
with chemometrics. The initial selection (step 2) has only very recently been tackled by 
chemometric methods. The initial selection is performed by chromatographic experts 
using their expertise. Recent breakthroughs in the accessibility of artificial intelligence 
(AI) techniques have made it possible to apply expert system technology to incorporate 
expertise-related knowledge in computers. This is going to be important in the next few 
years [l-3]. 

Expert systems are going to be important in other areas too. Considering once again 
the optimization step and more specifically the optimization of mobile phases in HPLC, 
it is clear that for an optimization method one requires an optimization criterion (for 
instance, one might optimize the resolution) and an optimization design (for instance a 
Simplex). Many such optimization methods have been described by Schoenmakers and 
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Berridge [4, 51 and strategies such as the solvent triangle by Snyder and Glajch [6, 71 
using the so-called overlapping resolution maps are well known in chemometrics under 
the name “mixture designs”. Several HPLC manufacturers have one for their 
instrument. Unfortunately, this is usually claimed to be the one and only good 
optimization method. It is not well enough understood that there is no such thing and 
many disappointments by users are due to this misunderstanding. Different criteria and 
designs are needed when one optimizes a separation of nearly 100 components in a plant 
extract, or when one tries to separate a drug from a biological matrix. Different designs 
and criteria are therefore required for different applications. The problem for the non- 
expert user of optimization methodology is to choose the right criterion and design for a 
specific problem and it is to be expected that this will be done using an expert system. In 
fact, research about expert systems for the selection of experimental designs has already 
been carried out by Deming [8]. In the experimental optimization of HPLC the next 
significant improvement will be development of systems which contain many different 
criteria and designs and are driven by an expert system, that will choose the best 
combination for a specific situation. 

The chemometrician is also involved in step 5. The output of the detector is a set of 
signals that must be brought into a form that is useful for the chromatographer. This first 
involves cleaning up the signal through noise reduction, using mathematical techniques 
such as smoothing, filtering, etc. In this “cleaned up” chromatogram one needs to 
resolve any overlapping peaks through the use of deconvolution techniques. Finally, 
peak areas must be related to concentration by regression or calibration methods. 

There is a lot of chemometric activity devoted to regression techniques; for instance, 
techniques designed to detect and avoid the disastrous effect of outliers [9], and 
guidelines on how to carry out multivariate calibration (see below). 

The data obtained in step 5 form the raw material on which conclusions can be based. 
Suppose that a fatty acid profile was obtained. Depending on the application, this could 
yield the conclusion that the bacterial isolate analysed belongs to microorganism X, or 
that the blood analysed indicates genetic disorder Y, or that the fat investigated could be 
attributed to animal species Z. In AI terminology this process is referred to as the 
transformation of low level data to higher level concepts, the low level data being the 
analytical results, while the microorganism, genetic disorder or species represent the 
higher level concept. Many different chemometric techniques can be used here, for 
example, time-series methodology to study time-dependent results, or pattern recog- 
nition or multivariate statistics to extract meaningful information in situations where 
many data are available on the same object. 

Important topics in chemometrics are method validation and quality assurance. Much 
of the validation is to do with accuracy and precision and uses well established statistical 
procedures. Chemometricians are interested in developing methods to do this efficiently. 
For instance, so-called Kalman filtering techniques are used to predict how often it is 
necessary to check the calibration standard [lo, 111. Another trend is to include other 
performance criteria, apart from accuracy and precision. An example is to be found in a 
recent article by Mulholland [12] concerning the use of Plackett Burman designs to 
determine the ruggedness of an HPLC method. Finally, there is the issue of 
communication with the external world. There are of course very many different subjects 
that can be considered under this heading. One typical chemometric approach is 
exemplified by an operational research study by Vandeginste [13] into the organisational 
aspects of the laboratory, to identify bottlenecks and identify solutions to remedy them. 
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The initial method selection 
At this stage it is interesting to consider the automatic selection of initial conditions for 

an HPLC method. This requires the selection of several interacting elements such as the 
mode of HPLC (reversed-phase, normal phase or ion-pair chromatography), the 
stationary phase, the composition of the mobile phase, the type of detector and the 
question as to whether one is going to add a buffer to the solvent or not, and the type of 
buffer, etc. These elements interact because they cannot be chosen independently; for 
instance, the use of an electrochemical detector more or less prohibits the use of normal 
phase HPLC. 

The process leading to the selection of a method can be represented as a decision tree, 
as illustrated in Fig. 2. Of course, this is only an unrealistically small branch of the tree. 

Figure 2 
Example of a decision tree. 
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The expert’s reasoning is much more complex. As already stated, the number of possible 
combinations of stationary phases, mobile phases, detectors, etc. is very high. This is 
referred to as the “combinatorial explosion”. Quite clearly it is not possible to draw 
decision trees that permit such a large amount of potential solutions to be taken into 
account. One needs to reduce the number of possible decisions. Human experts use 
certain tactics or strategies to arrive at a solution, thereby restricting the number of 
possible solutions to be considered. One of the problems in constructing the decision tree 
is, however, that the strategies used by an expert usually exist only implicitly. The expert 
may have a strategy in his head but not on paper. If one is to use a decision tree then 
clearly the strategy must be formal and explicit. 

There are two other problems with the use of a decision tree in this context. One is that 
many elements of the decision process are based on experience, such as the fact already 
cited that an electrochemical detector cannot be combined with normal-phase solvents. 
Finally pharmaceutical analysis does not stand still and it is therefore necessary that one 
should be able to add new possibilities and delete obsolete approaches. 

To solve these problems the authors have investigated the possibility of using expert 
systems. An expert system is characterised by its structure, which consists of at least two 
separate parts, namely the so-called “knowledge base” and the “inference engine”. The 
knowledge base contains knowledge about objects, such as electrochemical detection or 
carboxylic acids. This knowledge consists of descriptive data and relationships between 
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objects. The best known way of representing this kind of knowledge consists of the use of 
rules which are called production rules. Examples of such rules are: 
“Zf X contains -COOH then X = acid 
1fX = acid then add acetic acid to mobile phase 
1f X contains -COOH then add acetic acid to mobile phase” 
By combining these two rules one can infer that: 
If X contains a carboxylic acid function then acetic acid should be added to the mobile 

phase. 
This set of specific rules is merely an instantiation of the general logical mechanism: 
“If A then B” and “If B then C” permits the inference “Zf A then C”. 

An inference engine contains such general logical mechanisms. An important 
characteristic of the expert system is that the inference mechanism is separate from the 
knowledge base containing the actual rules and facts. The inference mechanism chains 
the rules together to form a decision tree. These rules can consist of general or expert 
knowledge. Moreover, one can quite easily add rules or delete them, i.e. the knowledge 
base can be updated. What the expert, in this instance the chromatographer, needs to do 
is to formulate the rules in the first instance and enter them into the expert system. 

Several expert systems for method selection in HPLC [l, 21 or for method 
development [3] have been proposed. The authors’ expert system for method selection in 
HPLC of drugs contains about 120 rules at this stage. Its overall strategy [4,5] is based on 
certain observations, such as the fact that all drug determinations can really be carried 
out on a single stationary phase, the CN bonded phase, which is suitable both for 
reversed-phase and normal phase operation. It is clear to the authors that, at least for 
drug analysis, the large number of stationary phases available is really redundant. 

Although the whole system has not yet been validated, the main parts of the system 
have been found to give acceptable solutions in about 90% of the cases that have been 
chosen at random and tested. 

There are two ways of developing an expert system. One can write the complete expert 
system including the inference engine, or one can buy the inference engine and only add 
the rules, i.e. the knowledge base. In the latter case one must purchase a so-called 
“shell” and this is of course the easiest way. This does not mean that any shell can be 
used. Research on the question of defining which expert shells are most suitable for 
chromatographic expert systems, is currently in progress in the authors’ laboratory. It 
seems probable at this stage that pure production systems are not the best way of 
representing knowledge in liquid chromatography, but that a hybrid tool using both 
frames and rules is likely to yield the best results. 

Pattern recognition 
A different kind of problem is created by the surfeit of information generated by 

modern chromatographic or spectroscopic methods. Pattern recognition can play a role 
in digesting this large amount of information. 

A set of chromatographic patterns yields a data matrix, consisting of the concen- 
trations of n variables by m objects. Suppose there were only two variables. Then the 
objects could be visualised and their relationships studied in a two-dimensional graph. 
This would still be possible with three variables by making a three-dimensional graph. 
However, the data matrix is usually n-dimensional, n being much larger than 3, and of 
course it is not possible to make an n-dimensional graph. One of the aims of pattern 
recognition methodology is to enable the visualisation of n-dimensional data by reducing 
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the n-dimensional space to two-dimensional coordinates. Principal components analysis 
is the best known method of achieving this. Before considering this method, it should be 
noted that there are other methods of pattern recognition. 

Supervised pattern recognition is used when one knows that the objects belong to two 
or more classes, for instance isolates of two different bacteria. Supervised pattern 
recognition is then used to derive a classification rule that permits the two classes to be 
differentiated. 

Another application arises when it is not known whether the objects belong to more 
than one class, but one wants to investigate whether such classes occur. This is called 
unsupervised learning and the techniques used are called clustering techniques. 

To understand better how the method of principal components analysis operates, one 
can consider a simple situation, namely the reduction of the number of dimensions from 
2 to 1. This means that one reduces two-dimensional space (i.e. a plane) to a single 
dimension (i.e. a line) by projecting the points originally present in the plane onto a line. 
The question then arises as to which line one should project the points onto. In Fig. 3 two 
possibilities are shown. It is clear that line A (PCl) is to be preferred since the image 
perceived along the line is closer to the bidimensional reality. For instance, one can see 
along A that the points belong to two groups. This information cannot be obtained from 
the projection on B (PC2). One must therefore select the direction of the line so that it 
takes into account as much of the variance in the data as possible or, to put it in another 
way, so that one loses as little information as possible. In geometrical terms, the best 
direction is that which coincides with the axis of maximal elongation. 

Figure 3 
Reducing the dimensionality by means of principal 
components analysis. 

The dispersion of the points along this line is then minimal. The remaining variation 
around the first line, which is called the first principal component (PCl), can be 
represented by constructing a second principal component (PC2) orthogonal to the first. 
In this case there is no reduction in the number of dimensions; but this is a simple 
transformation, such that the first dimension is more significant than the second. One 
can generalize this for n dimensions. One then obtains n principal components ordered in 
such a way that the information contained in the first is more important than that in the 
second, and that the second component is more significant than the third, and so on. One 
then reasons that the last components do not contain important information, or that they 
only correspond to noise, so that they can be omitted, thus reducing the number of 
dimensions to one, two or three and for graphical purposes, preferably to two. By 
plotting the sample on those two first PC axes one then obtains a two-dimensional 
representation of the n-dimensional data matrix. The principle of this method is simple 
and so much software is available, even for very small personal computers, that every 
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chromatographer who has to collect data sets where the chromatogram is to be used as a 
pattern should really be familiar with the method. An interesting application of this kind 
of technique is the discrimination analysis of subspecies of honeybees by means of their 
cuticular hydrocarbon spectra [16]. Figure 4 shows the non-linear map for these data. 
Non-linear mapping is a technique which is used for the same purpose as principal 
component analysis. 
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Pattern recognition was described in the chemical literature for the first time cu. 1972 
by Kowalski. The technique seems now to be more generally recognized. Although the 
applications are still limited it would seem that more and more manufacturers are 
starting to incorporate these methods in their instruments. One example concerns fatty 
acid patterns from bacteria. There is a gas chromatograph commercially available which 
collects gas chromatographic patterns and analyses them after pyrolysis using a pattern 
recognition program. The instrument is said to be able to recognize bacteria from these 
patterns. 

Another recent example offers a solution for the detection of tampering with capsules. 
Pharmaceutical firms and the food industry have both been repeatedly subjected to 
threats that some poison would be added to their product. Unfortunately, these threats 
have been carried out on several occasions, the best known probably being the addition 
of cyanide to Tylenol in the USA in the early 1980s. Many millions of samples had to be 
inspected rapidly and in a non-destructive way. An unsupervised pattern recognition 
technique has been proposed by Lodder [17] to study the near-infrared analysis (NIRA) 
pattern of a capsule and thereby detect abnormalities in a simple, continuous way 
suitable for solving the tampering problem. In general, NIRA seems to be one of the 
methods where pattern recognition is destined to play an important role. 

Multivariate calibration 
From a chemometric viewpoint the most significant development as regards 

calibration in chromatography is in the use of whole spectra obtained with the 
photodiode array detector. This kind of calibration is multivariate in nature because the 
multichannel detector allows the measurement of optical absorption at many wave- 
lengths simultaneously. The absorption at each wavelength is a variable related to the 
concentration of the substances present and therefore this is a multivariate situation. In 
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fact, one could make a data matrix of absorption at specified wavelengths against 
retention time, as illustrated in Fig. 5. Multivariate calibration is relevant to other topics 
such as peak finding or peak identification. The first operation is usually the extraction of 
principal components. 

Again, let us first consider a simple situation in which a single substance is measured 
simultaneously at two UV wavelengths. The measurements fall along a line which is PC1 
(see Fig. 6). One PC can therefore represent a two wavelength spectrum of a single 
substance. More wavelengths can be used in the same way and one can condense the 
whole spectrum in one PC. This by itself is not important, but now consider the situation 
where two substances elute under the same chromatographic peak. The pure substances 
would give the measurements represented by points along the broken lines and the 
mixtures would yield the crosses in Fig. 7. 

A principal component plot can be made of these data (Fig. 8). By virtue of the fact 
that a significant second principal component exists, the method detects that there are 
two substances present. This is an initial and welcomed result and it is as far as one can go 
with the straightforward application of principal components. To recover the spectra of 
the two substances would of course be even better and to achieve this one requires factor 
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Figure 5 
Data matrix of absorption against retention time. 
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Figure 6 
PC analysis of a one-component sample measured at 
two wavelengths simultaneously. 
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Figure 7 
Analysis of a 2-component sample, measured at two 
wavelengths simultaneously. 

Figure 8 
PC analysis of a 2-component sample, measured at 
two wavelengths simultaneously. 
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analysis. This is a method in which principal components are rotated in a meaningful 
fashion. One way of describing principal components is to call it a transformation of 
coordinates. One observes that the extraction of PC1 and PC2 requires that the 
centrepoint of the coordinate system be shifted from point 0 to point X, followed by 
rotation of the axes (Fig. 9). The angle between the axes remains the same and therefore 
this transformation is called orthogonal. The principal components representative of the 
pure substances PCA and PCB form a system of non-orthogonal axes. By transforming 
the principal component plot of the mixture through non-orthogonal rotation into the 
PCA-PCB plot, one is then able to obtain the principal component axes of the pure 
substances and from these one can then recover the unknown spectra. The mathematics 
require sophisticated matrix algebra. 

Automatic learning 
There are two ways of thinking, namely deduction and induction. Deductive inference 

is the derivation of a logical consequence from a given set of premises [18]. Chaining 
rules together as expert systems do, is a form of deductive reasoning. In contrast, 
inductive inference is a mode of reasoning that starts with specific facts and derives more 
general rules. Expert systems using this form of logic start with examples of situations in 
which certain conclusions were reached or decisions taken and try to derive from these 
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Figure 9 
Orthogonal transformation of the extracted principal 
component-axes. 

examples the rules underlying the decision process itself. The kind of expert system that 
is used to select methods in chromatography is a deductive system. The developer of the 
system has given it rules and it uses these rules to arrive at decisions. Therefore it is also 
called rule driven. The inductive system is not given rules: its role is to obtain them from 
examples. It is therefore called example drive. 

An example will make clear what can be done with such expert systems. Two such 
systems, TIMM and EX-TRAN, were used [19] to automatically derive classification 
rules in a situation where a number of olive oil samples were analysed for their fatty acid 
composition. The samples originated from different Italian provinces and the expert 
system derived rules that would permit the classification of subsequent samples of 
unknown origin. In the particular case where it was required to discriminate between 
West and East Ligurian oil, the system concluded for instance, that if the linolenic acid 
content were higher than 15 and the oleic acid content lower than 7870, the sample would 
be West Ligurian, and so on. The rule set is shown in Fig. 10. Although this example 
stems from food analysis, it is not difficult to think of pharmaceutical or biological 
examples. 

It is interesting to note that there is strong analogy with supervised pattern 
recognition, where a data matrix about two or more classes is used to derive a decision 
model. Indeed pattern recognition is an inductive way of thinking and the problem of 
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Figure 10 
The rule set, as obtained by EX-TRAN from the fatty acid composition to discriminate between East-Ligurian 
oil (Ea.Lig) and West-Ligurian oil (We.Lig). 



CHEMOMETRICS IN PHARMACEUTICAL ANALYSIS 545 

classifying oils according to their origin could have been solved just as well by pattern 
recognition as by the use of expert systems. In fact it has been shown that certain pattern 
recognition methods are somewhat better than the expert systems. However, the expert 
systems have two big advantages. One is that they are more user-friendly; one needs less 
experience to be able to use them. The other and more important advantage is that 
pattern recognition can only be used really well with numerical data. There are, 
however, many situations where one needs to mix data of different types. For instance, 
when one uses the results of sex hormone determinations for biomedical reasons, one 
needs to take into account the variable sex. Such a nominal variable cannot be easily 
mixed with the numerical hormone data for use by pattern recognition methods. Expert 
systems such as EX-TRAN are better suited for this task. 

Conclusion 

To conclude one could state that chemometrics is or could be important at all stages of 
the measurement process. Chemometrics is the science that helps to make good use of 
information technology. It is one of the tools that will help to develop intelligent 
analysers, i.e. analysers that automatically select the correct method for a given problem, 
carry it out, validate it and interpret the results. 

The implementation of some amount of logic reasoning and learning capacity is a 
challenging domain in which chemometricians will be most active the next few years. 
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